
A Radial Basis Funtion Approah to GasStorage ValuationAlexander Boogert∗, Denis Mazières†November 13, 2011AbstratWe introdue two new regression methods (Radial Basis Funtionand Tensor of Radial Basis Funtion) to the Least-Squares Monte Carlo(LSMC) method in the ontext of gas storage valuation with the spotapproah. Further, we propose a new methodology whih ombines twoexisting ones in the spot approah: it ombines disretisation of volumewith multivariate regressions.Our numerial examples show that these new valuation methods mathand frequently manage to exeed the value of our benhmark. We also �ndthat the valuation su�ers in the ase where insu�ient points are plaednear the volume boundaries. We expet that our new methodology inombination with the two new regression methods will prove bene�ial tosolve valuation problems with several volume levels in the future.1 IntrodutionGas storages have traditionally been used to math supply and demand through-out the year. In the urrent environment of liberalised gas markets inludingthird-party aess to gas storage, valuation and hedging of gas storages deservesour attention. Gas storages are managed by utilities and merhants all aroundthe world. Their motive is to either use gas storages for portfolio managementpurposes, pure market trading or a ombination of these. In this paper we takethe market-based valuation perspetive, as it an reate an independent benh-mark. In pratie three di�erent valuation tehniques are used to operate a gasstorage: rolling intrinsi, spread options, and the spot approah.The spot approah seeks to apture short-term volatility by trading (in prin-iple) only in the spot, whih is the most volatile and exhibits mean-reversion.This spot approah is the fous of the urrent artile. The other two methodsseek to apture forward volatility by trading the omplete forward urve. Therolling intrinsi approah loks in the maximum value today (alled the intrinsi
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value). The holder then waits until a pro�table risk-free trade an be made at afuture date, whih an happen when there is a swith in the forward urve. Thespread options approah monetises the payo� of suh swithes using a spreadoption. For more information on the rolling intrinsi and spread options ap-proah we refer to Boogert & De Jong [2℄ and the referenes therein. We notethe latter artile suggests to ombine the spot approah with a stati �nanialhedge.At the heart of the spot approah lies an approximation of the ontinuationvalue. The ontinuation value is the value we attah today to having a gasstorage with a spei� volume tomorrow. Least-Squares Monte Carlo (LSMC)methods an be used to �nd suh an approximation. The idea of these methodsis to �nd a relation between state variables whih are known today with thevalue of the ontrat tomorrow. First applied as a numerial tehnique to solveAmerian options (see Carrière [5℄, Longsta� & Shwartz [13℄ and Tsitsiklis& Van Roy (TvR)[18℄) these methods have sine been applied to a variety ofvaluation problems. The extension to gas storage valuation an be found inBoogert & De Jong [1℄.In previous literature onerning the spot approah using the LMSC method(Boogert & De Jong [1℄ [2℄, Carmona & Ludkovski [4℄, Denault et al. [7℄)the volume aspet of a gas storage was treated in two di�erent ways. We willintrodue a new methodology whih falls in-between the existing methodologies.This new methodology and its relation to the alternative methods are looked atin the next setion. Part of the innovation in the reent literature is to regress onsattered data in a two-dimensional (prie and volume) setting. In this artilewe will therefore onsider how regression methods perform on sattered and gridbased data.We introdue ompatly supported Radial Basis Funtions (RBF) and om-patly supported Tensor of Basis Funtions (TBF) as an alternative regressionmethod. RBF funtions an be separated into globally supported basis funtionsand ompatly supported basis funtions. Globally supported basis funtions,eg polynomials or Gaussian, are in�uened by all data sites on the domain ofinterest; ompatly supported only by data sites in the neighbourhood of theirentre points. The ompatly supported TBF was investigated in Hubbert &Mazières [12℄, and is ompared in that paper against the ompatly supportedRBF. We will introdue RBF and TBF from a mathematial perspetive in Se-tion 3. We are interested to introdue these methods for their potential to solvehigh-dimensional regression problems, see Buhmann [3℄ and Fasshauer [8℄. Ouraim in this paper is to introdue these methods to gas storage valuation in atwo-dimensional setting and benhmark them against a one-dimensional setting.In the urrent artile we limit ourselves to one prie and one volume dimension(and thus a two-dimensional setting). We plan to use these methods in higherdimensions in the future, eg by introduing additional volume dimensions.To summarise, our ontributions are:
• We introdue two new regression methods (RBF and TBF) whih havenot been used in ombination with the LSMC method before in energy2



�nane
• We onsider a new methodology to the spot approah whih falls in-between the existing methodologies
• We �nd that these new methods provide higher, if not similar values forthe gas storage when ompared to our benhmark. Further, they deliverthese values using fewer simulations.
• We �nd evidene that there needs to be su�ient points plaed near theboundaries to avoid a drop in value. In our methodology we an add suhpoints easily.2 Relation to previous literatureIn this artile we onsider a new methodology for the spot approah, whih mixestwo existing methodologies. Below we will desribe these two methodologies inmore detail, and highlight the di�erenes to our methodology.In the BdJ (Boogert & De Jong [1℄ [2℄) methodology the volume dimension isdisretised and a regression is applied to every volume level to relate pries todaywith the value tomorrow. Whenever a value is needed during the valuation for avolume point outside of the disrete volume levels an interpolation is used. Thevalue is alulated for every simulation for every prie-volume grid point. Thealternative, to apply a single regression to both prie and volume was testedby Boogert & De Jong [1℄, but they reported unsatisfatory onvergene resultsfor this method. For this reason we use new regression methods as disussed inSetion 3.In the CL/DSS (Carmona & Ludkovski [4℄, extended by Denault et al. [7℄)methodology the volume dimension is not disretised and a single regression isapplied to relate underlying pries today and volume tomorrow with the valuetomorrow. This methodology assoiates one simulation to one volume level.CL/DSS make use of two types of Least-Squares Monte Carlo (LSMC) meth-ods. The �rst one, popularised by Longsta� & Shwartz [13℄ (or LS approah)and the other by Tsitsiklis & Van Roy [18℄ (or TvR approah). The �rst one de-termines the value from subsequent ash �ows, while the seond one determinesthe value by reading it from the regression surfae. For more detail we refer tothe disussion in Glasserman [9℄. As noted by Carmona & Ludkovski the TvRapproah has less variane but more bias ompared to the LS approah whenapplied to prie Amerian options.The CL/DSS methodology (alled BLSM by Carmona & Ludkovski) aims tofollow as muh as possible the LS approah, and only use oasionally the TvR inspei� irumstanes. This omes at a omputational ost as the LS approahis slower than the TvR approah. In order to follow the LS approah CL/DSSemploy a speial proedure to determine how to satter the prie-volume datasites. The proedure relies on a mehanism to foreast relevant volume levelsin a bakward fashion, whih aims to maintain `forward optimal paths'. When3



CL/DSS annot maintain forward optimal paths, they randomise the volumelevel and apply the TvR approah instead.In our method we take an intermediate approah to the distribution of prie-volume data sites. We will develop on this later. Further, we refrain from usingthe proedure desribed above. We simply use a standard disretisation or insome instanes randomisation of the volume level. One of the reasons we donot use the mehanism to foreast relevant volume levels is that we expet ourregression to experiene boundary e�ets, whih is a onentration of the erroron the boundaries of the domain. With suh a mehanism automatially de�ningdata sites, we would lose the ontrol to alloate su�ient data sites on theboundaries. This would obviously deteriorate the auray in ase a regressionis arried out with too few data sites in the boundary regions. The seond reasonfor not using this mehanism is due to both operational restritions and theshape of the forward urve: we an be wrong in our foreast and the approahwill plae the volume points inorretly. As a onsequene of not using thismehanism we are now free to set a grid aording to other riteria. For example,if we were to use an adaptive grid we would gain on omputational speed (thisis espeially true in TBF setting, see the explanation on TBF below). The priewe pay is that we always use the TvR approah, whih is not as aurate asthe LS method. We expet our improved regression methods to balane againstthis di�erene.RBF are applied in high dimensional interpolation and regression, eg inimage proessing. In the past deade RBF has been a very ative domain ofresearh, important referenes are Fasshauer [8℄, Shabak [15℄ and Wendland[19℄. In �nane, the main appliation has been to solve PDE. An appliation ofglobally supported RBF in LSMC has been shown by Grau [10℄. He uses sparsepolynomial basis funtions to value moving window Asian options, allable on-vertible bonds, and thin plate basis funtions to value a barrier option. As faras we know ompatly supported RBF have not been applied in energy �nanebefore. When di�erent basis funtions are ompared, in the ontext of LSMC, itis often found that power funtions work well. This was onluded by Longsta�& Shwartz [13℄, Moreno & Navas [14℄ and Stentoft [17℄ for a variety of �nanialoptions and Boogert & De Jong [1℄ and [2℄ for gas storage.Carmona & Ludkovski [4℄ and Denault et al. [7℄ inlude volume into theregression for gas storage. Further, Carmona & Ludkovski [4, p. 367℄ indiatethey experimented with exponential and polynomials as basis funtions, butdo not provide details as to whih exat bases are applied and no omparisonis provided. Denault et al. [7, p.8℄ indiate they experimented with di�erentbases (stepwise, pieewise linear and polynomials) and onluded simple powerswork well, but no omparison is provided either. In this artile we present aomparison between ompatly supported RBF and simple powers.
4



3 Two approahes for multivariate regressionsWe are now going to present the tools, ie kernels and regressions, that we willapply later in the gas storage valuation. Two types of kernel will be introdued.First, the Radial Basis Funtion and then the Tensor of Basis Funtions.3.1 Radial Basis FuntionNumerial methods based on Radial Basis Funtions (RBF) are well known fortheir dimension �blindness�. For this reason they are in theory ideal andidatesfor solving high dimensional problems. This dimension blindness (and the originof the name radial) omes from the fat that their support is de�ned by theEulidean norm ‖ · ‖, or put simply by the distane between two points de�ningthe support of the basis. The support is radial around a so alled entre point.Another fundamental feature of RBF is their stritly positive de�niteness.So that when used in the ontext of interpolation or regression, they lead topositive de�nite matries whih are then invertible. This is a key propertywhih we will impliitly make use of throughout this work.3.1.1 Choosing a ompatly supported basis funtionRBF omes in di�erent �avours. Some are globally supported like the Gaussian,the thin plate spline and the generalised multiquadri. Others are ompatlysupported, suh as the family of Wendland and Wu funtions, see [8℄ and [19℄.All work in a similar manner as basis funtions for interpolation and regression.Among the ompatly supported, most have an additional feature whihsales their support. This is done through the adjustment of the shape fator ǫ.An inrease in ǫ shrinks the support of the ompatly supported basis funtions,while a derease in ǫ broadens the support.Throughout this paper we will use a spei� type of ompatly supportedbasis funtion, from the family of Wendland funtions. The one we have ho-sen is the Wendland C2 de�ned in R
3. This means that this funtion has asmoothness of order 2 and an be used in problems up to and inluding threedimensions. Similar funtions are available for higher or lower orders of smooth-ness and are available for higher dimensional problems. The equation for thisfuntion is:

φ(r) = (1− ǫr)4+(4ǫr + 1) (1)We provide an illustration of our basis funtion in Figure 1. In the top dia-gram we show the impat of the shape fator on the one-dimensional Wendlandfuntion. In this ase the entre point is set at 0. On �rst sight these funtionslook like Gaussians, but they ontain a de�nite uto� point after whih thevalue is zero, hene their ompat support nature.We seleted the Wendland C2, see Equation (1), as it is su�iently smoothfor our problem but not too smooth. With a higher order of smoothness for the5



−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
1D Wendland C2 in R3

 

 
ε = 0.008
ε = 0.02
ε = 0.05

−50
0

50

−50

0

50
0

0.5

1

2D Wendland C2 in R3, ε = 0.02

Figure 1: Impat of shape fator ǫ on support for Wendland C2 de�ned in R
3in 1 and 2 dimensionsbasis funtion we would be at risk to over-�t the problem. The family of Wend-land funtions o�ers a polynomial order of smoothness. Globally supportedbasis funtions, like the Gaussian, are in�nitely smooth. Although this soundslike an attrative feature, it leads to interpolation and regressor matries withlarge ondition numbers, whih are harder to invert. This baks up our hoiefor the ompatly supported basis funtion.3.1.2 RBF based interpolationWe have hosen to �rst introdue RBF based interpolation and then move tothe RBF based regression, whih we will use further in this artile. There aretwo reasons for this. First, in the RBF literature we observe it is mostly writtenin the ontext of interpolation, see Hubbert & Mazières [12℄ and Wendland [19℄.Seond, the exposition is easier starting with the interpolation approah ratherthan straight with the regression one.The d−dimensional sattered data interpolation problem is posed as follows:let Ω ⊂ R

d denote the domain of a d−dimensional funtion Y . Suppose that theonly values we have for Y are those at a set of N distint loations {xi}
N
i=1 ⊂ Ω,whih we all data sites. The problem is to �nd an interpolant sf : Ω → R suhthat the value of the funtion sf mathes the value Y in all data sites xi:

sf (xi) = Y (xi) i = 1, . . . , N. (2)6



Let's onsider sf as an expansion of RBF suh as,
sf (xi) =

M
∑

j=1

αjφ(‖xi − xj‖) (3)where α are the interpolation oe�ients and φ are the RBF applied to theentre points xj , j = 1 . . .M and assoiated with M basis funtions. Note thatthese entre points usually do not oinide with the data sites. Equation (2)an be rewritten with Equation (3),
Y (xi) =

M
∑

j=1

αjφ(‖xi − xj‖) i = 1, . . . , N (4)In matrix form this is,
Y = Φα (5)where Y is the vetor of N values and α is the vetor of M interpolationoe�ients, while Φ is the N by M square interpolation matrix (for interpola-tion, M = N). This interpolation matrix results from applying the RBF to thedistane matrix, where this distane matrix is the Eulidean norm of the datasites taken against the entre points,

distance matrix = ‖xi − xj‖ i = 1, . . . , N, j = 1, . . . ,M3.1.3 RBF based regressionThe regression within a RBF setting is a mere extension of the interpolationpresented above and is e�etively an over-determined ase where N > M . Now,let's all β the regression oe�ients, previously known as α in interpolation,and write Equation (4) and (5) in the regression setting.
Y (xi) =

M
∑

j=1

βjφ(‖xi − xj‖) i = 1, . . . , N (6)In matrix form this is,
Y = Φβ (7)where Y is the vetor of N values and β is the vetor of M regressionoe�ients, while Φ is the N by M regressor matrix but is not square anymore as now N > M . Further, if the regressor matrix Φ is generated from aset of distint entre points, it is full rank M . Hene Φ

′

Φ is non-singular andinvertible. This derives from the stritly positive de�niteness property of theRBF, whih we de�ned earlier in setion 3.1.Sine Φ is full olumn rank, the solution of equation (7) an be obtained as
β = (Φ

′

Φ)−1Φ
′

Y (8)7



As it was said before, the matrix Φ′Φ is in theory stritly positive de�nite,hene invertible. However in pratie this matrix happens to be, very often,poorly onditioned and lose to singularity. This omes from the fat that a�xed support is used for the basis funtion (RBF), whih we use to onstrutthe regressor matrix Φ. The onstrution of the regressor ross-produt matrix
Φ

′

Φ worsens the ondition number found for the regressor matrix Φ. In addition,the regressor matrix an end up with a high ondition number, when datasitesalmost overlap. It is possible to ompute β using Equation (8), but it has tobe in ombination with the omputation of optimal shape fators (whih salethe support of the basis) at every time step. We will disuss this in more detailin Setion 5.3. We experimented with this, but found that this is very timeonsuming. A omputationally heaper alternative is to diretly solve the linearsystem of Equation (7) with a linear system solver or to use the Moore-Penroseinverse on the regressor matrix Φ. We experimented with both and found thatthey give very similar, if not idential, results.3.2 Tensor of Basis Funtion3.2.1 ConeptAn alternative to the RBF is to onsider a tensor of RBF. The idea behindthe Tensor of Basis Funtions (TBF) using univariate Wendland funtions wasintrodued in Hubbert & Mazières [12℄. Despite the TBF only using univariatebasis funtions, it an be used for multivariate interpolations or regressions, iefor any number of dimensions. This idea stems from the fat that the produtof stritly positive de�nite basis funtions is stritly positive de�nite. This is ef-fetively the Shur produt Theorem in disguise, see Cheney & Light [6℄ or Horn[11℄ for a formal de�nition. Further, despite obvious strutural di�erenes theTBF manages to keep the main properties of the RBF, whih are the dimensionblindness and the stritly positive de�nitiveness mentioned earlier.3.2.2 TBF based interpolationFor the same reasons we introdued the RBF in the interpolation setting �rst.Let's start to introdue the TBF for the interpolation problem too. This willmake the transition to the TBF based regression a lot easier. This is as most ofthe theory around tensor of basis funtions fouses on interpolation, see Hubbert& Mazières [12℄ and Cheney & Light [6℄. We keep here the same interpolationproblem presented in the previous Setion in Equation (2). Here the value
Y (xi) living on a d−dimensional domain will be interpolated with an expansionof TBF, namely by a produt of univariate basis funtions. This expansion is:
sf (xi) =

M
∑

j=1

αj

d
∏

l=1

φl(‖xl

i − xl

j‖) 8



=

M
∑

j=1

αjφ
1(‖x1

i − x1

j ‖)φ
2(‖x2

i − x2

j ‖) . . . φ
l(‖xl

i − xl

j‖) . . . φ
d(‖xd

i − xd

j ‖)All the xl are the l-oordinates of the data sites xi = [x1

i , x
2

i , . . . , x
l

i, . . . , x
d

i ], i =
1, . . . , N . αj are the regression oe�ients. φ1(·), φ2(·), . . . , φd(·) are the TBFapplied to the data sites xi and assoiated with M entre points xj .It is useful to see the TBF de�ned in d−dimensional spae. However, sinein the next setion we will limit ourselves to two dimensions, we will revert toa more friendly notation denoting by p dimension 1 and by v dimension 2.

sf (xi) =

M
∑

j=1

αjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (9)where αj are the regression oe�ients and φp(·)φv(·) are the TBF applied tothe data sites xi = [pi vi], i = 1, . . . , N and assoiated with M entre points.On �rst sight when we ompare the TBF to the RBF we note that only theonstrution of the basis is di�erent, but this alone has profound onsequeneson the performane and stability of the method. With TBF, as opposed to withRBF, eah basis works independently in spei�ally designated dimensions. Wewill see later that we an use this design feature to our advantage, when we willonsider ompatly supported basis funtions equipped with shape fators.Now let's rewrite the interpolation problem set in Equation (2) with Equa-tion (9),
Y (xi) =

M
∑

j=1

αjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , NIn matrix form this is,
Y = Φp ⊗ Φvαwhere Y remains the vetor of N values and α is again the vetor of Minterpolation oe�ients, while Φp ⊗ Φv is the N by M square interpolationmatrix (for N = M). The operator ⊗ is the tensor produt as well known asthe Kroneker produt, see Cheney & Light [6℄ for more details.3.2.3 TBF based regressionLike for the RBF one an re-interpret the interpolation with TBF, seen above,into a regression setting. This is written,

Y (xi) =
M
∑

j=1

βjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (10)where N > MIn matrix form this is, 9



Y = Φp ⊗ ΦvβThen we an ompute β suh as,
β =

[

(Φp ⊗ Φv)
′

(Φp ⊗ Φv)
]−1

(Φp ⊗ Φv)
′

Y (11)We follow here the method introdued by Hubbert & Mazières [12℄ to inversethe TBF. This is done by using properties of tensor algebra whih allow rewritingEquation (11) into
β =

(

Φ
′

pΦp

)−1

Φ
′

p ⊗
(

Φ
′

vΦv

)−1

Φ
′

v Y (12)The omputational speed-up is ahieved by applying the Moore-Penrose al-gorithm separately to the two matries Φ
′

pΦp and Φ
′

vΦv whih need to be in-verted, rather than to the larger matrix (Φp ⊗ Φv)
′

(Φp ⊗ Φv).4 Gas storage valuationIn this Setion we provide a mathematial desription of our new methodologyof the spot approah for gas storage valuation. We refer to [1℄ and [4℄ for anextended desription of the gas storage problem. We will illustrate the univariateand new multivariate regressions using RBF and TBF in Setion 4.1 and 4.2below.4.1 Spot approah using univariate regressionWe denote by v(t) the gas volume in storage at the start of day t, and by ∆vthe ation during day t. We denote by ontinuation value C(t, S(t), v(t+1)) thevalue we attah today to having a gas storage with volume v(t + 1) tomorrowgiven a spot prie today of S(t). We get to this volume after taking an allowedation ∆v starting at volume v(t) today. If we denote the set of allowed ationsby D(t, v(t)) and the immediate payo� of an ation by h(S(t),∆v), then ourpriing problem an be de�ned as �nding for every ombination (S(t), v(t)) theoptimal ation as de�ned by
arg max

∆v∈D(t,v(t))
{h(S(t),∆v) + C(t, S(t), v(t+ 1))} (13)We will disretise the volume into n volume levels. For our benhmarkwe will regress the state variable spot prie on future value Y at volume level

v(t+1;n). If we have m simulations and n volume levels, this means we regress
m future values at volume level v(t+ 1;n) on m spot pries and we do this forevery volume level. Thus in total we perform n regressions per time step. Ourbenhmark Cubi1D regression method is the following regression10



Y = β0 + β1S(t) + β2S
2(t) + β3S

3(t) (14)Using the regression oe�ients, we an �nd estimated future values for eahfuture volume level. If an ation∆v takes us in-between two future volume levelswe use linear interpolation between the two estimated future values.In the �rst part of our numerial example in Setion 5 we will work withan equidistant volume grid. In the seond part of our numerial example wewill show how a non-equidistant volume grid an be used. In the �rst part ofour numerial example we will provide a omparison between univariate andmultivariate regression methods. On the univariate side, we will onsider theubi mentioned above in Equation (14) and the Wendland C2 RBF desribedearlier in Setion 3.1, but this time as a univariate.On the multivariate side, regression methods have been presented in the pre-vious Setion. Next we will illustrate how to use them for gas storage valuation.4.2 Spot approah using multivariate regressionWe re-introdue here the multivariate regression methods introdued in Setion3, but now in a gas storage setting. This means we will provide a spei� gasstorage interpretation to the previous general desription. We will keep thesame notation as in Setion 4.1. In a gas storage setting, the RBF regressionEquation (6) beomes
Y (xi) =

M
∑

j=1

βjφ(‖xi − xj‖) i = 1, . . . , N (15)where Y is the future gas storage ontrat value and every data site xi = [pi vi]ontaines the oordinates of a prie-volume data site hosen on the prie-volumesurfae prevailing at every time step. The distribution of the prie-volume datasites an be either a well ordered grid or sattered data.In gas storage setting the TBF regression Equation (10) beomes
Y (xi) =

M
∑

j=1

βjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (16)where pi and vi are the projetions of xi data sites on respetively the prieand volume dimensions. Further, βj are the regression oe�ients and φp(·)and φv(·) are the bases of the TBF applied to the data sites xj = [pj vj ], j =
1, . . . ,M and assoiated with M entre points. The basis φp(·) works only inthe prie dimension and φv(·) works only in the volume dimension. Beause theTBF works on the projetions of the data sites rather than on the data sitesthemselves, the method bene�ts greatly from using data on a grid.
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5 Numerial example5.1 Example settingIn our numerial example we study three di�erent storages with harateristisgiven in Table 1. In addition to these harateristis we set the minimum, startand end volume equal to zero. We assume there are no osts involved otherthan those related to buying and selling gas and set the interest rate to zero.The trading period is one year. The ases represent an oil reservoir (ase 1),a fast (ase 2) and �nally a very fast (ase 3) salt avern. Case 3 represents aase where the maximum volume is not an exat multiple of the injetion andwithdrawal rate. This allows us to study the e�et of interpolation betweenvolume levels. ase 1 ase 2 ase 3Max. injetion rate 1 2 2.7Max. withdrawal rate 1 5 5.8Max. volume 100 100 50Table 1: Charateristis of the three di�erent storage ases in our numerialexampleIn this artile we take as a prie proess the mean-reverting one-fatorShwartz [16℄ model, also referred to as a disrete-time Ornstein-Uhlenbekproess. In log-terms it is given by
d lnPST (t) = κ

[

µ(t)− lnPST (t)−
(σST )2

2κ

]

dt+ σST dWST (t) (17)where PST (t) is the spot prie and the mean level µ(t) is a deterministiallytime varying funtion. The daily mean-reversion rate κ and volatility σST areassumed to be onstant. In our experiments we use σST = 150% and κ = 12%(annualised). We set µ(t) equal to the forward urve as shown in Figure 2.Whenever we present a gas storage valuation, this is based on six di�erentseeds.5.2 Comparison 1D with 2D regression methodsIn our numerial example we ompare the valuation oming from four di�er-ent regression methods. We use 500 simulations and 100 volume levels, andompare two 1-dimensional regression methods (Cubi1D, RBF1D) with two 2-dimensional regression methods (RBF2D, TBF2D). The Cubi1D is our benh-mark method. It uses the regression in Equation (14) in the prie dimensionand interpolates the volume dimension. In RBF1D we replae the ubi re-gression by a one-dimensional RBF regression on pries. The 2-dimensionalregression methods interpolate over prie and volume as in Equation (15) and12
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Figure 2: Initial forward urveCubi1D RBF1D RBF2D TBF2Dase 1 mean 1072.8 1073.4 1074.7 1073.5stdev 0.4 0.2 0.2 0.2ase 2 mean 1378.9 1383.1 1378.3 1379.3stdev 2.4 1.4 1.2 1.5ase 3 mean 1466.1 1471.4 1467.6 1471.4stdev 3 1.6 1.7 1.8Table 2: Valuation of the three storage ases using the four di�erent regressionmethods, 500 simulations(16). We provide the valuation results for the four regression methods and thethree storage ases in Table 2.We onlude that all methods provide a similar value: all methods delivera value within 1% of eah other. This is in line with the results provided byCarmona & Ludkovski [4℄ and Denault et al. [7℄, who present results within 2%of their benhmark value (oming from an alternative method). It is howeverimportant to note that the new methods we proposed (RBF1D, RBF2D andTBF2D) onsistently outperform our benhmark Cubi1D.In Table 2 we also see that Cubi1D provides less stable valuations for thesame number of simulations; it has a higher standard deviation of the mean re-sults than the alternative methods. An alternative way to ompare the stabilityof a simulation algorithm is to ompare in-sample and out-of-sample valuations,see e.g. Boogert & De Jong [1℄. An in-sample valuation is the value resultingfrom implementing the learned deision rules on the same set of simulations.This value is known to have an upper bias in the original TvR approah due toJensen's inequality, see Glasserman [9℄. An out-of-sample valuation is the valueresulting from implementing the learned deision rules on a new set of simula-13



tions, and has a lower bias. We present the results in Table 3. We on�rm thatthe in-sample valuation has an upper bias: the out-of-sample valuation adjuststhe value downwards. In Table 2, and the remainder of the artile, we reportout-of-sample values.1 We also observe that the 1D regression methods have ahigher di�erene between in-sample and out-of-sample than the 2D regressionmethods, espeially Cubi1D. This is a good point for the 2D methods.Cubi1D RBF1D RBF2D TBF2Dase 1 in sample 1073.7 1073.7 1075.0 1073.7out of sample 1072.8 1073.4 1074.7 1073.5di�erene -0.9 -0.3 -0.4 -0.2ase 2 in sample 1385.3 1385.9 1379.5 1380.4out of sample 1378.9 1383.1 1378.3 1379.3di�erene -6.3 -2.8 -1.2 -1.1ase 3 in sample 1473.8 1475 1469.1 1472.6out of sample 1466.1 1471.4 1467.6 1471.4di�erene -7.7 -3.6 -1.5 -1.2Table 3: Comparison in and out-of-sample valuation of the three storage ases,
500 simulationsNext, we onsider the impat of the number of simulations on the valuation.We ran the valuations of the three storage ases using the four regression meth-ods for di�erent numbers of simulations (50, 100, 150, 250 and 500). The resultsare shown in Figure 3. In Table 2 we showed how, for 500 simulations, all valu-ations ame out in a tight range. In Figure 3 we note that TBF2D and RBF1Dreah already their maximum value for 100 simulations, whereas RBF2D settlesat 250 simulations and Cubi1D inreases until 500 simulations. This is in linewith the results in Table 2: Cubi1D has a higher standard deviation of themean results. This is as well true for a lower number of simulations.From a performane perspetive we have found TBF2D to be signi�antlyfaster than RBF2D by several folds. This is thanks to the inversion method usedfor the TBF2D method, see Equation (12). This method was initially introduedby Hubbert & Mazières [12℄, and we see here a similar omputational speedimprovement as they did. Their results indiate the TBF is 30 (2 dimensions),80 (3 dimensions) and 680 (4 dimensions) times faster than the RBF method.This hints that TBF should be the method to favour should we onsider to arryout regressions in higher dimensions.Therefore we onlude that the 2D regression methods are more stable thantheir 1D ounterparts. In partiular TBF2D appears promising given its goodperformane for a low number of simulations. This ould be due to the fatthat there are two free shape fators in TBF2D. We will disuss the impat ofthe shape fators on the valuation below, where we will also introdue the waythese are determined.1We assume that the MiTvR valuation provided by Carmona & Ludkovski [4℄ are in-samplevalues: they are higher than the alternative. 14



50 100 150 200 250 300 350 400 450 500
1055

1060

1065

1070

1075
case1

No. of  simulations
V

a
lu

e

 

 

50 100 150 200 250 300 350 400 450 500
1360

1370

1380

1390
case2

No. of  simulations

V
a

lu
e

50 100 150 200 250 300 350 400 450 500
1420

1440

1460

1480
case3

No. of  simulations

V
a

lu
e

Cubic
RBF1D
RBF2D
TBF

Figure 3: Impat of the number of simulations on the valuation using the fourdi�erent regression methods for the three storage ases: ase1, 2 and 3 respe-tively from top to bottom5.3 Impat of shape fator5.3.1 Fixed shape fator for RBFOne of the main features of ompatly supported RBF and TBF is the shapefator ǫ. We introdued the notion of shape fator in Setion 3.1. From Setion4.2 we know that RBF2D has a single shape fator ǫRBF , whereas TBF2D hastwo shape fators ǫp and ǫv. In Figure 1 we showed the impat of hanging ǫon the support of the Wendland funtion, whih we use as basis funtion. Itsformula was given in Equation (1). In general, a large ǫ ontrats the support,while a small ǫ broadens the support of the ompatly supported basis funtion.In the gas storage problem we note that the support hanges over time.This is espeially relevant for the volume dimension: the possible volume rangeinreases from a single point (at the start of the ontrat) to the maximumallowed interval (in the middle of the ontrat) and bak to a single point againat the end of the ontrat. This makes it di�ult for �xed shape parameters toperform well throughout the whole trading period.Within RBF2D a single shape fator has to ater for the hanging supportin both the volume and prie dimension. For this reason it seems hard toadjust ǫRBF over time. Fortunately, RBF2D based valuations are very indulgentonerning the hoie of the shape fator, as seen in Figure 4. We provide in theFigure 4 the value resulting from di�erent hoies of ǫRBF for the three storage15



ases. It is obvious from these graphs that the RBF2D valuation reahes itsmaximum value for a broad range of ǫ ≈ [10−5, 10−4] and that this range anbe used for di�erent storage ases. Hene, we are pretty safe piking one ǫRBFfor all the valuations we require.If we apply a similar trial and error proess to determine a orret valuefor the ǫp and ǫv, we �nd that the TBF2D method is more sensitive than theRBF2D to a small hange in either shape fator. As a onsequene the TBF2Dbased valuation method has more di�ulties to onverge to the orret ontratvalue using �xed shape fators. We therefore seek an adaptive method to setthe two shape fators over the trading period. This is disussed next.5.3.2 Adaptive shape fator for TBFAs far as we know there is no exat formula available to determine the optimal
ǫp and ǫv. In order to approximate these shape fators we will �rst need tointrodue the onept of projetion of �ll distane on the di�erent dimensionsof the problem, see Hubbert & Mazières [12℄ for details. In the ontext of gasstorage the �ll distane is a measure of the data distribution in eah dimensionof the problem, that is prie and volume. The �ll distanes, hp and hv forrespetively the prie and volume dimension are de�ned as,

hp = sup
p∈Ωp

min
pj∈χp

‖p− pj‖ (18)
hv = sup

v∈Ωv

min
vj∈χv

‖v − vj‖ (19)The �ll distane hp (respetively hv) indiates how well the data in the set
χp (respetively χv) �lls out the domain Ωp (respetively Ωv). A geometriinterpretation of the �ll distane is given by the radius of the largest possibleempty ball that an be plaed among the data loations inside the domain.Finding the optimal shape fator is an ative domain of researh in RBF, butto our knowledge no exat formula is available for it. Nevertheless, we knowthat there is an inverse relationship between the �ll distane and the optimalshape fators in the RBF setting, see Fasshauer [8℄ and Shabak [15℄. In theliterature this is known as stationary setting or adaptive method. Here we applythis method to the TBF setting in order to approximate ǫp and ǫv. We de�nethe shape fators as,

ǫp =
cp

hp

(20)
ǫv =

cv

hv

(21)where cp and cv are onstants, also known as �xed base sale fators.When we experimented with the adaptive formulas in Equation (20) and (21)for a variety of ases, we found a pair of �xed based sale fators (cp, cv) that16



work well for all of them. We investigate this further using Figure 5 where weshow the impat of hanging the �xed based sale fators for the three di�erentstorage ases. We see in Figure 5 that the cv has very little impat on the value,exept when cv gets bigger than 0.01, where the ontrat value beomes errati.On the other hand, cp has a signi�ant impat on the value. Furthermore, itseems that in most ases the same cp provides the highest value for the ontratdespite working with di�erent types of storages.
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Figure 4: Impat of epsilon on the value using RBF2D regression5.4 Removing data sitesWe are aware that high dimensional regressions are omputationally expensive.Hene to make our methods future proof we investigate the idea of removing datasites from the full-grid we have been using so far in our regression. Ultimately,this is to redue the size of the regressor matries and speed up the omputation.The additional bene�t of reduing the size of these matries is that it tends tolower their ondition numbers, whih in turn helps solving the linear systemsof regression equations. This removal proess brings us from a full-grid dataset to a sattered data set. In the ontext of gas storage this takes us from aregression on a full-grid to a regression on sattered data sites, as in Carmona& Ludkovki [4℄ and Denault et al. [7℄.In our experiment we start from the full-grid approah and take out half ofthe data sites. We ompare di�erent ways to take them out. First, we take outdata sites ompletely at random. Next, data sites are removed randomly while17
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Figure 5: Impat of �xed base sale fators on the value using TBF2D regression
p layers of data sites are proteted on the volume level sides; these data sites arenever taken out. This approah is illustrated in Figure 6 where we proteted 5layers of data sites (or p = 5). In this experiment we remove 50% of the datasites, and onsider di�erent levels of protetion p = 0, . . . , 5 for the volume levelboundaries.Results are provided in Figures 7 for RBF2D and Figure 8 for TBF2D. Ifwe ompare the valuation for 150 and 75 simulations in Figure 3, we wouldexpet to �nd a similar di�erene in value in this urrent experiment. This isbeause taking out 50% of the data sites ompares to reduing the number ofsimulations from 150 to 75 whilst keeping the number of volume levels onstantat 100. E�etively we start with a full grid with 15,000 data sites and drop to7,500 sattered data sites.However, a lear drop in value is observed when no protetion (p = 0) isapplied against the removal of data sites from the volume level boundaries. Butas soon as a few layers are proteted, the gas storage value regains it orretvalue. On the other hand if too many data sites are proteted on the sides,fewer data sites remain in the middle and the quality of the regression su�ers.We an observe this phenomena in both the RBF2D and TBF2D approah, seeFigure 7 and 8. This on�rms that both these methods are very sensitive to thepresene of su�ient support on the boundaries of the volume domain of theregression. We have not observed the same phenomenon in the prie dimension.A potential explanation for the suess of the protetion method of theboundary layer an be found in the ontext of interpolation and regression: the18
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Figure 6: Illustration of volume layer protetion in a grid. In this example 5volume layers of data sites are always preserved.highest error values tend to luster on the boundaries of the domain. One wayto ure this problem is to onentrate su�ient data sites on the boundariesof the domain of interest. This is a fairly rude approah, but it has beenreported to work well in Fasshauer [8℄ in the ontext of solving a PDE withKansa's method. Despite this observation, we are surprised that this e�et isso important in our experiment. In partiular, it is unlear why storage ase 1shows a muh stronger e�et than the more �exible ases 2 and 3.As expeted, we notie that there is hardly any redution in the ontratvalue if we ompare the previous numerial experiment in Figure 3 with theurrent one (as long as we perform some protetion on the volume boundary).This illustrates that both RBF2D and TBF2D based regressions are very stablemethods, whih funtion well even with very few simulations or with a verysmall number of sattered data sites. This leads us to onlude both methodsin priniple are very e�ient multi-dimensional regression methods. We believethat this element will be key to the introdution of other dimensions to thisvaluation problem, espeially on the volume level.The seond important point to note here is that both RBF2D and TBF2Dbased regression methods work indi�erently on either grid or sattered data.This opens the opportunity to adaptively alloate the data sites where they aremost needed, whih is simply where the errors are the largest. This is onlypossible with methods working with sattered data. We believe this will provebene�ial again when we move to higher dimensional problems. The main lessonfrom this experiment is that during the proess, one should maintain at least19
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Figure 7: Impat of removing data sites using RBF2D regressionone layer of data sites on the volume level boundaries to aim for the maximumvalue for the ontrat. From a omputational perspetive, TBF2D bene�ts fromworking on a grid, whereas RBF2D does not.6 ConlusionIn this artile we introdued ompatly supported Radial Basis Funtions intothe Least-Squares Monte Carlo regression setting. We employed two types oftwo-dimensional regression methods, one based on Radial Basis Funtions in twodimensions (RBF2D) and the other one based on the Tensor of two univariateBasis Funtions (TBF2D). We used these Least-Squares Monte Carlo methodsto value gas storage with the spot approah. We proposed a variant of earlierspot approahes from Boogert & de Jong [1℄, and Carmona & Ludkovki [4℄ andDenault et al. [7℄ (CL/DSS). In our methodology we applied a two-dimensionalregression on both prie and volume, but maintained a uniform disretisation inthe volume dimension whilst we refrained from using the mehanism introduedin CL/DSS to reate `forward optimal paths'.We ompared the valuation of a slow (depleted �eld) and a fast (salt avern)gas storage using our two-dimensional regression approahes against the one di-mensional one from Boogert & de Jong [1℄ alled Cubi1D. We found that bothRBF2D and TBF2D provide a similar, yet onsistently higher valuation thanthe Cubi1D for both the slow and the fast storage. All valuations are within20
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Figure 8: Impat of removing data sites using TBF2D regression
1% of eah other. A positive point for the RBF2D and TBF2D based regressionmethods is that they both onverge to the orret value for a lower number ofsimulations. If we ompare RBF2D and TBF2D, we see TBF2D has severaladvantages. First, we �nd that TBF2D is omputationally superior and a lotfaster than the RBF2D due to the usage of the inversion method introdued byHubbert & Mazières [12℄. This indiates that TBF2D is more appliable to mul-tiple dimensions. Another advantage onerns the shape fator. While RBF2Dontains one shape fator whih has to balane the support of two dimensions,the TBF2D ontains one shape parameter for eah dimension. Currently, wehave employed a trial-and-error proess to hoose the shape fator(s). The nat-ural next step is to investigate alternatives to hoose the shape fator(s) in anautomated fashion.Next, we ompared the impat of using sattered data in ontrast to griddata. We found that if we take out prie-volume data sites at random, the valuean drop signi�antly. A solution to this problem is to protet the data sites onthe volume boundaries. In our example, a single layer turns out to be su�ient.This �nding draws our attention to the pratie of randomisation employed inthe CL/DSS approah in ase the mehanism used to reate forward optimalpaths fails. Although one would expet that this randomisation method works,we suggest to hange this omplete randomisation to a proedure that ensuresmore data sites to be assigned at the volume level boundaries.Compatly supported basis funtions, whih we used here, lead to a lowerondition number for the regressor matrix ompared to the one obtained from21
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