
A Radial Basis Fun
tion Approa
h to GasStorage ValuationAlexander Boogert∗, Denis Mazières†November 13, 2011Abstra
tWe introdu
e two new regression methods (Radial Basis Fun
tionand Tensor of Radial Basis Fun
tion) to the Least-Squares Monte Carlo(LSMC) method in the 
ontext of gas storage valuation with the spotapproa
h. Further, we propose a new methodology whi
h 
ombines twoexisting ones in the spot approa
h: it 
ombines dis
retisation of volumewith multivariate regressions.Our numeri
al examples show that these new valuation methods mat
hand frequently manage to ex
eed the value of our ben
hmark. We also �ndthat the valuation su�ers in the 
ase where insu�
ient points are pla
ednear the volume boundaries. We expe
t that our new methodology in
ombination with the two new regression methods will prove bene�
ial tosolve valuation problems with several volume levels in the future.1 Introdu
tionGas storages have traditionally been used to mat
h supply and demand through-out the year. In the 
urrent environment of liberalised gas markets in
ludingthird-party a

ess to gas storage, valuation and hedging of gas storages deservesour attention. Gas storages are managed by utilities and mer
hants all aroundthe world. Their motive is to either use gas storages for portfolio managementpurposes, pure market trading or a 
ombination of these. In this paper we takethe market-based valuation perspe
tive, as it 
an 
reate an independent ben
h-mark. In pra
ti
e three di�erent valuation te
hniques are used to operate a gasstorage: rolling intrinsi
, spread options, and the spot approa
h.The spot approa
h seeks to 
apture short-term volatility by trading (in prin-
iple) only in the spot, whi
h is the most volatile and exhibits mean-reversion.This spot approa
h is the fo
us of the 
urrent arti
le. The other two methodsseek to 
apture forward volatility by trading the 
omplete forward 
urve. Therolling intrinsi
 approa
h lo
ks in the maximum value today (
alled the intrinsi
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value). The holder then waits until a pro�table risk-free trade 
an be made at afuture date, whi
h 
an happen when there is a swit
h in the forward 
urve. Thespread options approa
h monetises the payo� of su
h swit
hes using a spreadoption. For more information on the rolling intrinsi
 and spread options ap-proa
h we refer to Boogert & De Jong [2℄ and the referen
es therein. We notethe latter arti
le suggests to 
ombine the spot approa
h with a stati
 �nan
ialhedge.At the heart of the spot approa
h lies an approximation of the 
ontinuationvalue. The 
ontinuation value is the value we atta
h today to having a gasstorage with a spe
i�
 volume tomorrow. Least-Squares Monte Carlo (LSMC)methods 
an be used to �nd su
h an approximation. The idea of these methodsis to �nd a relation between state variables whi
h are known today with thevalue of the 
ontra
t tomorrow. First applied as a numeri
al te
hnique to solveAmeri
an options (see Carrière [5℄, Longsta� & S
hwartz [13℄ and Tsitsiklis& Van Roy (TvR)[18℄) these methods have sin
e been applied to a variety ofvaluation problems. The extension to gas storage valuation 
an be found inBoogert & De Jong [1℄.In previous literature 
on
erning the spot approa
h using the LMSC method(Boogert & De Jong [1℄ [2℄, Carmona & Ludkovski [4℄, Denault et al. [7℄)the volume aspe
t of a gas storage was treated in two di�erent ways. We willintrodu
e a new methodology whi
h falls in-between the existing methodologies.This new methodology and its relation to the alternative methods are looked atin the next se
tion. Part of the innovation in the re
ent literature is to regress ons
attered data in a two-dimensional (pri
e and volume) setting. In this arti
lewe will therefore 
onsider how regression methods perform on s
attered and gridbased data.We introdu
e 
ompa
tly supported Radial Basis Fun
tions (RBF) and 
om-pa
tly supported Tensor of Basis Fun
tions (TBF) as an alternative regressionmethod. RBF fun
tions 
an be separated into globally supported basis fun
tionsand 
ompa
tly supported basis fun
tions. Globally supported basis fun
tions,eg polynomials or Gaussian, are in�uen
ed by all data sites on the domain ofinterest; 
ompa
tly supported only by data sites in the neighbourhood of their
entre points. The 
ompa
tly supported TBF was investigated in Hubbert &Mazières [12℄, and is 
ompared in that paper against the 
ompa
tly supportedRBF. We will introdu
e RBF and TBF from a mathemati
al perspe
tive in Se
-tion 3. We are interested to introdu
e these methods for their potential to solvehigh-dimensional regression problems, see Buhmann [3℄ and Fasshauer [8℄. Ouraim in this paper is to introdu
e these methods to gas storage valuation in atwo-dimensional setting and ben
hmark them against a one-dimensional setting.In the 
urrent arti
le we limit ourselves to one pri
e and one volume dimension(and thus a two-dimensional setting). We plan to use these methods in higherdimensions in the future, eg by introdu
ing additional volume dimensions.To summarise, our 
ontributions are:
• We introdu
e two new regression methods (RBF and TBF) whi
h havenot been used in 
ombination with the LSMC method before in energy2



�nan
e
• We 
onsider a new methodology to the spot approa
h whi
h falls in-between the existing methodologies
• We �nd that these new methods provide higher, if not similar values forthe gas storage when 
ompared to our ben
hmark. Further, they deliverthese values using fewer simulations.
• We �nd eviden
e that there needs to be su�
ient points pla
ed near theboundaries to avoid a drop in value. In our methodology we 
an add su
hpoints easily.2 Relation to previous literatureIn this arti
le we 
onsider a new methodology for the spot approa
h, whi
h mixestwo existing methodologies. Below we will des
ribe these two methodologies inmore detail, and highlight the di�eren
es to our methodology.In the BdJ (Boogert & De Jong [1℄ [2℄) methodology the volume dimension isdis
retised and a regression is applied to every volume level to relate pri
es todaywith the value tomorrow. Whenever a value is needed during the valuation for avolume point outside of the dis
rete volume levels an interpolation is used. Thevalue is 
al
ulated for every simulation for every pri
e-volume grid point. Thealternative, to apply a single regression to both pri
e and volume was testedby Boogert & De Jong [1℄, but they reported unsatisfa
tory 
onvergen
e resultsfor this method. For this reason we use new regression methods as dis
ussed inSe
tion 3.In the CL/DSS (Carmona & Ludkovski [4℄, extended by Denault et al. [7℄)methodology the volume dimension is not dis
retised and a single regression isapplied to relate underlying pri
es today and volume tomorrow with the valuetomorrow. This methodology asso
iates one simulation to one volume level.CL/DSS make use of two types of Least-Squares Monte Carlo (LSMC) meth-ods. The �rst one, popularised by Longsta� & S
hwartz [13℄ (or LS approa
h)and the other by Tsitsiklis & Van Roy [18℄ (or TvR approa
h). The �rst one de-termines the value from subsequent 
ash �ows, while the se
ond one determinesthe value by reading it from the regression surfa
e. For more detail we refer tothe dis
ussion in Glasserman [9℄. As noted by Carmona & Ludkovski the TvRapproa
h has less varian
e but more bias 
ompared to the LS approa
h whenapplied to pri
e Ameri
an options.The CL/DSS methodology (
alled BLSM by Carmona & Ludkovski) aims tofollow as mu
h as possible the LS approa
h, and only use o

asionally the TvR inspe
i�
 
ir
umstan
es. This 
omes at a 
omputational 
ost as the LS approa
his slower than the TvR approa
h. In order to follow the LS approa
h CL/DSSemploy a spe
ial pro
edure to determine how to s
atter the pri
e-volume datasites. The pro
edure relies on a me
hanism to fore
ast relevant volume levelsin a ba
kward fashion, whi
h aims to maintain `forward optimal paths'. When3



CL/DSS 
annot maintain forward optimal paths, they randomise the volumelevel and apply the TvR approa
h instead.In our method we take an intermediate approa
h to the distribution of pri
e-volume data sites. We will develop on this later. Further, we refrain from usingthe pro
edure des
ribed above. We simply use a standard dis
retisation or insome instan
es randomisation of the volume level. One of the reasons we donot use the me
hanism to fore
ast relevant volume levels is that we expe
t ourregression to experien
e boundary e�e
ts, whi
h is a 
on
entration of the erroron the boundaries of the domain. With su
h a me
hanism automati
ally de�ningdata sites, we would lose the 
ontrol to allo
ate su�
ient data sites on theboundaries. This would obviously deteriorate the a

ura
y in 
ase a regressionis 
arried out with too few data sites in the boundary regions. The se
ond reasonfor not using this me
hanism is due to both operational restri
tions and theshape of the forward 
urve: we 
an be wrong in our fore
ast and the approa
hwill pla
e the volume points in
orre
tly. As a 
onsequen
e of not using thisme
hanism we are now free to set a grid a

ording to other 
riteria. For example,if we were to use an adaptive grid we would gain on 
omputational speed (thisis espe
ially true in TBF setting, see the explanation on TBF below). The pri
ewe pay is that we always use the TvR approa
h, whi
h is not as a

urate asthe LS method. We expe
t our improved regression methods to balan
e againstthis di�eren
e.RBF are applied in high dimensional interpolation and regression, eg inimage pro
essing. In the past de
ade RBF has been a very a
tive domain ofresear
h, important referen
es are Fasshauer [8℄, S
haba
k [15℄ and Wendland[19℄. In �nan
e, the main appli
ation has been to solve PDE. An appli
ation ofglobally supported RBF in LSMC has been shown by Grau [10℄. He uses sparsepolynomial basis fun
tions to value moving window Asian options, 
allable 
on-vertible bonds, and thin plate basis fun
tions to value a barrier option. As faras we know 
ompa
tly supported RBF have not been applied in energy �nan
ebefore. When di�erent basis fun
tions are 
ompared, in the 
ontext of LSMC, itis often found that power fun
tions work well. This was 
on
luded by Longsta�& S
hwartz [13℄, Moreno & Navas [14℄ and Stentoft [17℄ for a variety of �nan
ialoptions and Boogert & De Jong [1℄ and [2℄ for gas storage.Carmona & Ludkovski [4℄ and Denault et al. [7℄ in
lude volume into theregression for gas storage. Further, Carmona & Ludkovski [4, p. 367℄ indi
atethey experimented with exponential and polynomials as basis fun
tions, butdo not provide details as to whi
h exa
t bases are applied and no 
omparisonis provided. Denault et al. [7, p.8℄ indi
ate they experimented with di�erentbases (stepwise, pie
ewise linear and polynomials) and 
on
luded simple powerswork well, but no 
omparison is provided either. In this arti
le we present a
omparison between 
ompa
tly supported RBF and simple powers.
4



3 Two approa
hes for multivariate regressionsWe are now going to present the tools, ie kernels and regressions, that we willapply later in the gas storage valuation. Two types of kernel will be introdu
ed.First, the Radial Basis Fun
tion and then the Tensor of Basis Fun
tions.3.1 Radial Basis Fun
tionNumeri
al methods based on Radial Basis Fun
tions (RBF) are well known fortheir dimension �blindness�. For this reason they are in theory ideal 
andidatesfor solving high dimensional problems. This dimension blindness (and the originof the name radial) 
omes from the fa
t that their support is de�ned by theEu
lidean norm ‖ · ‖, or put simply by the distan
e between two points de�ningthe support of the basis. The support is radial around a so 
alled 
entre point.Another fundamental feature of RBF is their stri
tly positive de�niteness.So that when used in the 
ontext of interpolation or regression, they lead topositive de�nite matri
es whi
h are then invertible. This is a key propertywhi
h we will impli
itly make use of throughout this work.3.1.1 Choosing a 
ompa
tly supported basis fun
tionRBF 
omes in di�erent �avours. Some are globally supported like the Gaussian,the thin plate spline and the generalised multiquadri
. Others are 
ompa
tlysupported, su
h as the family of Wendland and Wu fun
tions, see [8℄ and [19℄.All work in a similar manner as basis fun
tions for interpolation and regression.Among the 
ompa
tly supported, most have an additional feature whi
hs
ales their support. This is done through the adjustment of the shape fa
tor ǫ.An in
rease in ǫ shrinks the support of the 
ompa
tly supported basis fun
tions,while a de
rease in ǫ broadens the support.Throughout this paper we will use a spe
i�
 type of 
ompa
tly supportedbasis fun
tion, from the family of Wendland fun
tions. The one we have 
ho-sen is the Wendland C2 de�ned in R
3. This means that this fun
tion has asmoothness of order 2 and 
an be used in problems up to and in
luding threedimensions. Similar fun
tions are available for higher or lower orders of smooth-ness and are available for higher dimensional problems. The equation for thisfun
tion is:

φ(r) = (1− ǫr)4+(4ǫr + 1) (1)We provide an illustration of our basis fun
tion in Figure 1. In the top dia-gram we show the impa
t of the shape fa
tor on the one-dimensional Wendlandfun
tion. In this 
ase the 
entre point is set at 0. On �rst sight these fun
tionslook like Gaussians, but they 
ontain a de�nite 
uto� point after whi
h thevalue is zero, hen
e their 
ompa
t support nature.We sele
ted the Wendland C2, see Equation (1), as it is su�
iently smoothfor our problem but not too smooth. With a higher order of smoothness for the5
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Figure 1: Impa
t of shape fa
tor ǫ on support for Wendland C2 de�ned in R
3in 1 and 2 dimensionsbasis fun
tion we would be at risk to over-�t the problem. The family of Wend-land fun
tions o�ers a polynomial order of smoothness. Globally supportedbasis fun
tions, like the Gaussian, are in�nitely smooth. Although this soundslike an attra
tive feature, it leads to interpolation and regressor matri
es withlarge 
ondition numbers, whi
h are harder to invert. This ba
ks up our 
hoi
efor the 
ompa
tly supported basis fun
tion.3.1.2 RBF based interpolationWe have 
hosen to �rst introdu
e RBF based interpolation and then move tothe RBF based regression, whi
h we will use further in this arti
le. There aretwo reasons for this. First, in the RBF literature we observe it is mostly writtenin the 
ontext of interpolation, see Hubbert & Mazières [12℄ and Wendland [19℄.Se
ond, the exposition is easier starting with the interpolation approa
h ratherthan straight with the regression one.The d−dimensional s
attered data interpolation problem is posed as follows:let Ω ⊂ R

d denote the domain of a d−dimensional fun
tion Y . Suppose that theonly values we have for Y are those at a set of N distin
t lo
ations {xi}
N
i=1 ⊂ Ω,whi
h we 
all data sites. The problem is to �nd an interpolant sf : Ω → R su
hthat the value of the fun
tion sf mat
hes the value Y in all data sites xi:

sf (xi) = Y (xi) i = 1, . . . , N. (2)6



Let's 
onsider sf as an expansion of RBF su
h as,
sf (xi) =

M
∑

j=1

αjφ(‖xi − xj‖) (3)where α are the interpolation 
oe�
ients and φ are the RBF applied to the
entre points xj , j = 1 . . .M and asso
iated with M basis fun
tions. Note thatthese 
entre points usually do not 
oin
ide with the data sites. Equation (2)
an be rewritten with Equation (3),
Y (xi) =

M
∑

j=1

αjφ(‖xi − xj‖) i = 1, . . . , N (4)In matrix form this is,
Y = Φα (5)where Y is the ve
tor of N values and α is the ve
tor of M interpolation
oe�
ients, while Φ is the N by M square interpolation matrix (for interpola-tion, M = N). This interpolation matrix results from applying the RBF to thedistan
e matrix, where this distan
e matrix is the Eu
lidean norm of the datasites taken against the 
entre points,

distance matrix = ‖xi − xj‖ i = 1, . . . , N, j = 1, . . . ,M3.1.3 RBF based regressionThe regression within a RBF setting is a mere extension of the interpolationpresented above and is e�e
tively an over-determined 
ase where N > M . Now,let's 
all β the regression 
oe�
ients, previously known as α in interpolation,and write Equation (4) and (5) in the regression setting.
Y (xi) =

M
∑

j=1

βjφ(‖xi − xj‖) i = 1, . . . , N (6)In matrix form this is,
Y = Φβ (7)where Y is the ve
tor of N values and β is the ve
tor of M regression
oe�
ients, while Φ is the N by M regressor matrix but is not square anymore as now N > M . Further, if the regressor matrix Φ is generated from aset of distin
t 
entre points, it is full rank M . Hen
e Φ

′

Φ is non-singular andinvertible. This derives from the stri
tly positive de�niteness property of theRBF, whi
h we de�ned earlier in se
tion 3.1.Sin
e Φ is full 
olumn rank, the solution of equation (7) 
an be obtained as
β = (Φ

′

Φ)−1Φ
′

Y (8)7



As it was said before, the matrix Φ′Φ is in theory stri
tly positive de�nite,hen
e invertible. However in pra
ti
e this matrix happens to be, very often,poorly 
onditioned and 
lose to singularity. This 
omes from the fa
t that a�xed support is used for the basis fun
tion (RBF), whi
h we use to 
onstru
tthe regressor matrix Φ. The 
onstru
tion of the regressor 
ross-produ
t matrix
Φ

′

Φ worsens the 
ondition number found for the regressor matrix Φ. In addition,the regressor matrix 
an end up with a high 
ondition number, when datasitesalmost overlap. It is possible to 
ompute β using Equation (8), but it has tobe in 
ombination with the 
omputation of optimal shape fa
tors (whi
h s
alethe support of the basis) at every time step. We will dis
uss this in more detailin Se
tion 5.3. We experimented with this, but found that this is very time
onsuming. A 
omputationally 
heaper alternative is to dire
tly solve the linearsystem of Equation (7) with a linear system solver or to use the Moore-Penroseinverse on the regressor matrix Φ. We experimented with both and found thatthey give very similar, if not identi
al, results.3.2 Tensor of Basis Fun
tion3.2.1 Con
eptAn alternative to the RBF is to 
onsider a tensor of RBF. The idea behindthe Tensor of Basis Fun
tions (TBF) using univariate Wendland fun
tions wasintrodu
ed in Hubbert & Mazières [12℄. Despite the TBF only using univariatebasis fun
tions, it 
an be used for multivariate interpolations or regressions, iefor any number of dimensions. This idea stems from the fa
t that the produ
tof stri
tly positive de�nite basis fun
tions is stri
tly positive de�nite. This is ef-fe
tively the S
hur produ
t Theorem in disguise, see Cheney & Light [6℄ or Horn[11℄ for a formal de�nition. Further, despite obvious stru
tural di�eren
es theTBF manages to keep the main properties of the RBF, whi
h are the dimensionblindness and the stri
tly positive de�nitiveness mentioned earlier.3.2.2 TBF based interpolationFor the same reasons we introdu
ed the RBF in the interpolation setting �rst.Let's start to introdu
e the TBF for the interpolation problem too. This willmake the transition to the TBF based regression a lot easier. This is as most ofthe theory around tensor of basis fun
tions fo
uses on interpolation, see Hubbert& Mazières [12℄ and Cheney & Light [6℄. We keep here the same interpolationproblem presented in the previous Se
tion in Equation (2). Here the value
Y (xi) living on a d−dimensional domain will be interpolated with an expansionof TBF, namely by a produ
t of univariate basis fun
tions. This expansion is:
sf (xi) =

M
∑

j=1

αj

d
∏

l=1

φl(‖xl

i − xl

j‖) 8



=

M
∑

j=1

αjφ
1(‖x1

i − x1

j ‖)φ
2(‖x2

i − x2

j ‖) . . . φ
l(‖xl

i − xl

j‖) . . . φ
d(‖xd

i − xd

j ‖)All the xl are the l-
oordinates of the data sites xi = [x1

i , x
2

i , . . . , x
l

i, . . . , x
d

i ], i =
1, . . . , N . αj are the regression 
oe�
ients. φ1(·), φ2(·), . . . , φd(·) are the TBFapplied to the data sites xi and asso
iated with M 
entre points xj .It is useful to see the TBF de�ned in d−dimensional spa
e. However, sin
ein the next se
tion we will limit ourselves to two dimensions, we will revert toa more friendly notation denoting by p dimension 1 and by v dimension 2.

sf (xi) =

M
∑

j=1

αjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (9)where αj are the regression 
oe�
ients and φp(·)φv(·) are the TBF applied tothe data sites xi = [pi vi], i = 1, . . . , N and asso
iated with M 
entre points.On �rst sight when we 
ompare the TBF to the RBF we note that only the
onstru
tion of the basis is di�erent, but this alone has profound 
onsequen
eson the performan
e and stability of the method. With TBF, as opposed to withRBF, ea
h basis works independently in spe
i�
ally designated dimensions. Wewill see later that we 
an use this design feature to our advantage, when we will
onsider 
ompa
tly supported basis fun
tions equipped with shape fa
tors.Now let's rewrite the interpolation problem set in Equation (2) with Equa-tion (9),
Y (xi) =

M
∑

j=1

αjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , NIn matrix form this is,
Y = Φp ⊗ Φvαwhere Y remains the ve
tor of N values and α is again the ve
tor of Minterpolation 
oe�
ients, while Φp ⊗ Φv is the N by M square interpolationmatrix (for N = M). The operator ⊗ is the tensor produ
t as well known asthe Krone
ker produ
t, see Cheney & Light [6℄ for more details.3.2.3 TBF based regressionLike for the RBF one 
an re-interpret the interpolation with TBF, seen above,into a regression setting. This is written,

Y (xi) =
M
∑

j=1

βjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (10)where N > MIn matrix form this is, 9



Y = Φp ⊗ ΦvβThen we 
an 
ompute β su
h as,
β =

[

(Φp ⊗ Φv)
′

(Φp ⊗ Φv)
]−1

(Φp ⊗ Φv)
′

Y (11)We follow here the method introdu
ed by Hubbert & Mazières [12℄ to inversethe TBF. This is done by using properties of tensor algebra whi
h allow rewritingEquation (11) into
β =

(

Φ
′

pΦp

)−1

Φ
′

p ⊗
(

Φ
′

vΦv

)−1

Φ
′

v Y (12)The 
omputational speed-up is a
hieved by applying the Moore-Penrose al-gorithm separately to the two matri
es Φ
′

pΦp and Φ
′

vΦv whi
h need to be in-verted, rather than to the larger matrix (Φp ⊗ Φv)
′

(Φp ⊗ Φv).4 Gas storage valuationIn this Se
tion we provide a mathemati
al des
ription of our new methodologyof the spot approa
h for gas storage valuation. We refer to [1℄ and [4℄ for anextended des
ription of the gas storage problem. We will illustrate the univariateand new multivariate regressions using RBF and TBF in Se
tion 4.1 and 4.2below.4.1 Spot approa
h using univariate regressionWe denote by v(t) the gas volume in storage at the start of day t, and by ∆vthe a
tion during day t. We denote by 
ontinuation value C(t, S(t), v(t+1)) thevalue we atta
h today to having a gas storage with volume v(t + 1) tomorrowgiven a spot pri
e today of S(t). We get to this volume after taking an alloweda
tion ∆v starting at volume v(t) today. If we denote the set of allowed a
tionsby D(t, v(t)) and the immediate payo� of an a
tion by h(S(t),∆v), then ourpri
ing problem 
an be de�ned as �nding for every 
ombination (S(t), v(t)) theoptimal a
tion as de�ned by
arg max

∆v∈D(t,v(t))
{h(S(t),∆v) + C(t, S(t), v(t+ 1))} (13)We will dis
retise the volume into n volume levels. For our ben
hmarkwe will regress the state variable spot pri
e on future value Y at volume level

v(t+1;n). If we have m simulations and n volume levels, this means we regress
m future values at volume level v(t+ 1;n) on m spot pri
es and we do this forevery volume level. Thus in total we perform n regressions per time step. Ourben
hmark Cubi
1D regression method is the following regression10



Y = β0 + β1S(t) + β2S
2(t) + β3S

3(t) (14)Using the regression 
oe�
ients, we 
an �nd estimated future values for ea
hfuture volume level. If an a
tion∆v takes us in-between two future volume levelswe use linear interpolation between the two estimated future values.In the �rst part of our numeri
al example in Se
tion 5 we will work withan equidistant volume grid. In the se
ond part of our numeri
al example wewill show how a non-equidistant volume grid 
an be used. In the �rst part ofour numeri
al example we will provide a 
omparison between univariate andmultivariate regression methods. On the univariate side, we will 
onsider the
ubi
 mentioned above in Equation (14) and the Wendland C2 RBF des
ribedearlier in Se
tion 3.1, but this time as a univariate.On the multivariate side, regression methods have been presented in the pre-vious Se
tion. Next we will illustrate how to use them for gas storage valuation.4.2 Spot approa
h using multivariate regressionWe re-introdu
e here the multivariate regression methods introdu
ed in Se
tion3, but now in a gas storage setting. This means we will provide a spe
i�
 gasstorage interpretation to the previous general des
ription. We will keep thesame notation as in Se
tion 4.1. In a gas storage setting, the RBF regressionEquation (6) be
omes
Y (xi) =

M
∑

j=1

βjφ(‖xi − xj‖) i = 1, . . . , N (15)where Y is the future gas storage 
ontra
t value and every data site xi = [pi vi]
ontaines the 
oordinates of a pri
e-volume data site 
hosen on the pri
e-volumesurfa
e prevailing at every time step. The distribution of the pri
e-volume datasites 
an be either a well ordered grid or s
attered data.In gas storage setting the TBF regression Equation (10) be
omes
Y (xi) =

M
∑

j=1

βjφp(‖pi − pj‖)φv(‖vi − vj‖) i = 1, . . . , N (16)where pi and vi are the proje
tions of xi data sites on respe
tively the pri
eand volume dimensions. Further, βj are the regression 
oe�
ients and φp(·)and φv(·) are the bases of the TBF applied to the data sites xj = [pj vj ], j =
1, . . . ,M and asso
iated with M 
entre points. The basis φp(·) works only inthe pri
e dimension and φv(·) works only in the volume dimension. Be
ause theTBF works on the proje
tions of the data sites rather than on the data sitesthemselves, the method bene�ts greatly from using data on a grid.

11



5 Numeri
al example5.1 Example settingIn our numeri
al example we study three di�erent storages with 
hara
teristi
sgiven in Table 1. In addition to these 
hara
teristi
s we set the minimum, startand end volume equal to zero. We assume there are no 
osts involved otherthan those related to buying and selling gas and set the interest rate to zero.The trading period is one year. The 
ases represent an oil reservoir (
ase 1),a fast (
ase 2) and �nally a very fast (
ase 3) salt 
avern. Case 3 represents a
ase where the maximum volume is not an exa
t multiple of the inje
tion andwithdrawal rate. This allows us to study the e�e
t of interpolation betweenvolume levels. 
ase 1 
ase 2 
ase 3Max. inje
tion rate 1 2 2.7Max. withdrawal rate 1 5 5.8Max. volume 100 100 50Table 1: Chara
teristi
s of the three di�erent storage 
ases in our numeri
alexampleIn this arti
le we take as a pri
e pro
ess the mean-reverting one-fa
torS
hwartz [16℄ model, also referred to as a dis
rete-time Ornstein-Uhlenbe
kpro
ess. In log-terms it is given by
d lnPST (t) = κ

[

µ(t)− lnPST (t)−
(σST )2

2κ

]

dt+ σST dWST (t) (17)where PST (t) is the spot pri
e and the mean level µ(t) is a deterministi
allytime varying fun
tion. The daily mean-reversion rate κ and volatility σST areassumed to be 
onstant. In our experiments we use σST = 150% and κ = 12%(annualised). We set µ(t) equal to the forward 
urve as shown in Figure 2.Whenever we present a gas storage valuation, this is based on six di�erentseeds.5.2 Comparison 1D with 2D regression methodsIn our numeri
al example we 
ompare the valuation 
oming from four di�er-ent regression methods. We use 500 simulations and 100 volume levels, and
ompare two 1-dimensional regression methods (Cubi
1D, RBF1D) with two 2-dimensional regression methods (RBF2D, TBF2D). The Cubi
1D is our ben
h-mark method. It uses the regression in Equation (14) in the pri
e dimensionand interpolates the volume dimension. In RBF1D we repla
e the 
ubi
 re-gression by a one-dimensional RBF regression on pri
es. The 2-dimensionalregression methods interpolate over pri
e and volume as in Equation (15) and12
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Figure 2: Initial forward 
urveCubi
1D RBF1D RBF2D TBF2D
ase 1 mean 1072.8 1073.4 1074.7 1073.5stdev 0.4 0.2 0.2 0.2
ase 2 mean 1378.9 1383.1 1378.3 1379.3stdev 2.4 1.4 1.2 1.5
ase 3 mean 1466.1 1471.4 1467.6 1471.4stdev 3 1.6 1.7 1.8Table 2: Valuation of the three storage 
ases using the four di�erent regressionmethods, 500 simulations(16). We provide the valuation results for the four regression methods and thethree storage 
ases in Table 2.We 
on
lude that all methods provide a similar value: all methods delivera value within 1% of ea
h other. This is in line with the results provided byCarmona & Ludkovski [4℄ and Denault et al. [7℄, who present results within 2%of their ben
hmark value (
oming from an alternative method). It is howeverimportant to note that the new methods we proposed (RBF1D, RBF2D andTBF2D) 
onsistently outperform our ben
hmark Cubi
1D.In Table 2 we also see that Cubi
1D provides less stable valuations for thesame number of simulations; it has a higher standard deviation of the mean re-sults than the alternative methods. An alternative way to 
ompare the stabilityof a simulation algorithm is to 
ompare in-sample and out-of-sample valuations,see e.g. Boogert & De Jong [1℄. An in-sample valuation is the value resultingfrom implementing the learned de
ision rules on the same set of simulations.This value is known to have an upper bias in the original TvR approa
h due toJensen's inequality, see Glasserman [9℄. An out-of-sample valuation is the valueresulting from implementing the learned de
ision rules on a new set of simula-13



tions, and has a lower bias. We present the results in Table 3. We 
on�rm thatthe in-sample valuation has an upper bias: the out-of-sample valuation adjuststhe value downwards. In Table 2, and the remainder of the arti
le, we reportout-of-sample values.1 We also observe that the 1D regression methods have ahigher di�eren
e between in-sample and out-of-sample than the 2D regressionmethods, espe
ially Cubi
1D. This is a good point for the 2D methods.Cubi
1D RBF1D RBF2D TBF2D
ase 1 in sample 1073.7 1073.7 1075.0 1073.7out of sample 1072.8 1073.4 1074.7 1073.5di�eren
e -0.9 -0.3 -0.4 -0.2
ase 2 in sample 1385.3 1385.9 1379.5 1380.4out of sample 1378.9 1383.1 1378.3 1379.3di�eren
e -6.3 -2.8 -1.2 -1.1
ase 3 in sample 1473.8 1475 1469.1 1472.6out of sample 1466.1 1471.4 1467.6 1471.4di�eren
e -7.7 -3.6 -1.5 -1.2Table 3: Comparison in and out-of-sample valuation of the three storage 
ases,
500 simulationsNext, we 
onsider the impa
t of the number of simulations on the valuation.We ran the valuations of the three storage 
ases using the four regression meth-ods for di�erent numbers of simulations (50, 100, 150, 250 and 500). The resultsare shown in Figure 3. In Table 2 we showed how, for 500 simulations, all valu-ations 
ame out in a tight range. In Figure 3 we note that TBF2D and RBF1Drea
h already their maximum value for 100 simulations, whereas RBF2D settlesat 250 simulations and Cubi
1D in
reases until 500 simulations. This is in linewith the results in Table 2: Cubi
1D has a higher standard deviation of themean results. This is as well true for a lower number of simulations.From a performan
e perspe
tive we have found TBF2D to be signi�
antlyfaster than RBF2D by several folds. This is thanks to the inversion method usedfor the TBF2D method, see Equation (12). This method was initially introdu
edby Hubbert & Mazières [12℄, and we see here a similar 
omputational speedimprovement as they did. Their results indi
ate the TBF is 30 (2 dimensions),80 (3 dimensions) and 680 (4 dimensions) times faster than the RBF method.This hints that TBF should be the method to favour should we 
onsider to 
arryout regressions in higher dimensions.Therefore we 
on
lude that the 2D regression methods are more stable thantheir 1D 
ounterparts. In parti
ular TBF2D appears promising given its goodperforman
e for a low number of simulations. This 
ould be due to the fa
tthat there are two free shape fa
tors in TBF2D. We will dis
uss the impa
t ofthe shape fa
tors on the valuation below, where we will also introdu
e the waythese are determined.1We assume that the MiTvR valuation provided by Carmona & Ludkovski [4℄ are in-samplevalues: they are higher than the alternative. 14
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Figure 3: Impa
t of the number of simulations on the valuation using the fourdi�erent regression methods for the three storage 
ases: 
ase1, 2 and 3 respe
-tively from top to bottom5.3 Impa
t of shape fa
tor5.3.1 Fixed shape fa
tor for RBFOne of the main features of 
ompa
tly supported RBF and TBF is the shapefa
tor ǫ. We introdu
ed the notion of shape fa
tor in Se
tion 3.1. From Se
tion4.2 we know that RBF2D has a single shape fa
tor ǫRBF , whereas TBF2D hastwo shape fa
tors ǫp and ǫv. In Figure 1 we showed the impa
t of 
hanging ǫon the support of the Wendland fun
tion, whi
h we use as basis fun
tion. Itsformula was given in Equation (1). In general, a large ǫ 
ontra
ts the support,while a small ǫ broadens the support of the 
ompa
tly supported basis fun
tion.In the gas storage problem we note that the support 
hanges over time.This is espe
ially relevant for the volume dimension: the possible volume rangein
reases from a single point (at the start of the 
ontra
t) to the maximumallowed interval (in the middle of the 
ontra
t) and ba
k to a single point againat the end of the 
ontra
t. This makes it di�
ult for �xed shape parameters toperform well throughout the whole trading period.Within RBF2D a single shape fa
tor has to 
ater for the 
hanging supportin both the volume and pri
e dimension. For this reason it seems hard toadjust ǫRBF over time. Fortunately, RBF2D based valuations are very indulgent
on
erning the 
hoi
e of the shape fa
tor, as seen in Figure 4. We provide in theFigure 4 the value resulting from di�erent 
hoi
es of ǫRBF for the three storage15




ases. It is obvious from these graphs that the RBF2D valuation rea
hes itsmaximum value for a broad range of ǫ ≈ [10−5, 10−4] and that this range 
anbe used for di�erent storage 
ases. Hen
e, we are pretty safe pi
king one ǫRBFfor all the valuations we require.If we apply a similar trial and error pro
ess to determine a 
orre
t valuefor the ǫp and ǫv, we �nd that the TBF2D method is more sensitive than theRBF2D to a small 
hange in either shape fa
tor. As a 
onsequen
e the TBF2Dbased valuation method has more di�
ulties to 
onverge to the 
orre
t 
ontra
tvalue using �xed shape fa
tors. We therefore seek an adaptive method to setthe two shape fa
tors over the trading period. This is dis
ussed next.5.3.2 Adaptive shape fa
tor for TBFAs far as we know there is no exa
t formula available to determine the optimal
ǫp and ǫv. In order to approximate these shape fa
tors we will �rst need tointrodu
e the 
on
ept of proje
tion of �ll distan
e on the di�erent dimensionsof the problem, see Hubbert & Mazières [12℄ for details. In the 
ontext of gasstorage the �ll distan
e is a measure of the data distribution in ea
h dimensionof the problem, that is pri
e and volume. The �ll distan
es, hp and hv forrespe
tively the pri
e and volume dimension are de�ned as,

hp = sup
p∈Ωp

min
pj∈χp

‖p− pj‖ (18)
hv = sup

v∈Ωv

min
vj∈χv

‖v − vj‖ (19)The �ll distan
e hp (respe
tively hv) indi
ates how well the data in the set
χp (respe
tively χv) �lls out the domain Ωp (respe
tively Ωv). A geometri
interpretation of the �ll distan
e is given by the radius of the largest possibleempty ball that 
an be pla
ed among the data lo
ations inside the domain.Finding the optimal shape fa
tor is an a
tive domain of resear
h in RBF, butto our knowledge no exa
t formula is available for it. Nevertheless, we knowthat there is an inverse relationship between the �ll distan
e and the optimalshape fa
tors in the RBF setting, see Fasshauer [8℄ and S
haba
k [15℄. In theliterature this is known as stationary setting or adaptive method. Here we applythis method to the TBF setting in order to approximate ǫp and ǫv. We de�nethe shape fa
tors as,

ǫp =
cp

hp

(20)
ǫv =

cv

hv

(21)where cp and cv are 
onstants, also known as �xed base s
ale fa
tors.When we experimented with the adaptive formulas in Equation (20) and (21)for a variety of 
ases, we found a pair of �xed based s
ale fa
tors (cp, cv) that16



work well for all of them. We investigate this further using Figure 5 where weshow the impa
t of 
hanging the �xed based s
ale fa
tors for the three di�erentstorage 
ases. We see in Figure 5 that the cv has very little impa
t on the value,ex
ept when cv gets bigger than 0.01, where the 
ontra
t value be
omes errati
.On the other hand, cp has a signi�
ant impa
t on the value. Furthermore, itseems that in most 
ases the same cp provides the highest value for the 
ontra
tdespite working with di�erent types of storages.
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Figure 4: Impa
t of epsilon on the value using RBF2D regression5.4 Removing data sitesWe are aware that high dimensional regressions are 
omputationally expensive.Hen
e to make our methods future proof we investigate the idea of removing datasites from the full-grid we have been using so far in our regression. Ultimately,this is to redu
e the size of the regressor matri
es and speed up the 
omputation.The additional bene�t of redu
ing the size of these matri
es is that it tends tolower their 
ondition numbers, whi
h in turn helps solving the linear systemsof regression equations. This removal pro
ess brings us from a full-grid dataset to a s
attered data set. In the 
ontext of gas storage this takes us from aregression on a full-grid to a regression on s
attered data sites, as in Carmona& Ludkovki [4℄ and Denault et al. [7℄.In our experiment we start from the full-grid approa
h and take out half ofthe data sites. We 
ompare di�erent ways to take them out. First, we take outdata sites 
ompletely at random. Next, data sites are removed randomly while17
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Figure 5: Impa
t of �xed base s
ale fa
tors on the value using TBF2D regression
p layers of data sites are prote
ted on the volume level sides; these data sites arenever taken out. This approa
h is illustrated in Figure 6 where we prote
ted 5layers of data sites (or p = 5). In this experiment we remove 50% of the datasites, and 
onsider di�erent levels of prote
tion p = 0, . . . , 5 for the volume levelboundaries.Results are provided in Figures 7 for RBF2D and Figure 8 for TBF2D. Ifwe 
ompare the valuation for 150 and 75 simulations in Figure 3, we wouldexpe
t to �nd a similar di�eren
e in value in this 
urrent experiment. This isbe
ause taking out 50% of the data sites 
ompares to redu
ing the number ofsimulations from 150 to 75 whilst keeping the number of volume levels 
onstantat 100. E�e
tively we start with a full grid with 15,000 data sites and drop to7,500 s
attered data sites.However, a 
lear drop in value is observed when no prote
tion (p = 0) isapplied against the removal of data sites from the volume level boundaries. Butas soon as a few layers are prote
ted, the gas storage value regains it 
orre
tvalue. On the other hand if too many data sites are prote
ted on the sides,fewer data sites remain in the middle and the quality of the regression su�ers.We 
an observe this phenomena in both the RBF2D and TBF2D approa
h, seeFigure 7 and 8. This 
on�rms that both these methods are very sensitive to thepresen
e of su�
ient support on the boundaries of the volume domain of theregression. We have not observed the same phenomenon in the pri
e dimension.A potential explanation for the su

ess of the prote
tion method of theboundary layer 
an be found in the 
ontext of interpolation and regression: the18
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Figure 6: Illustration of volume layer prote
tion in a grid. In this example 5volume layers of data sites are always preserved.highest error values tend to 
luster on the boundaries of the domain. One wayto 
ure this problem is to 
on
entrate su�
ient data sites on the boundariesof the domain of interest. This is a fairly 
rude approa
h, but it has beenreported to work well in Fasshauer [8℄ in the 
ontext of solving a PDE withKansa's method. Despite this observation, we are surprised that this e�e
t isso important in our experiment. In parti
ular, it is un
lear why storage 
ase 1shows a mu
h stronger e�e
t than the more �exible 
ases 2 and 3.As expe
ted, we noti
e that there is hardly any redu
tion in the 
ontra
tvalue if we 
ompare the previous numeri
al experiment in Figure 3 with the
urrent one (as long as we perform some prote
tion on the volume boundary).This illustrates that both RBF2D and TBF2D based regressions are very stablemethods, whi
h fun
tion well even with very few simulations or with a verysmall number of s
attered data sites. This leads us to 
on
lude both methodsin prin
iple are very e�
ient multi-dimensional regression methods. We believethat this element will be key to the introdu
tion of other dimensions to thisvaluation problem, espe
ially on the volume level.The se
ond important point to note here is that both RBF2D and TBF2Dbased regression methods work indi�erently on either grid or s
attered data.This opens the opportunity to adaptively allo
ate the data sites where they aremost needed, whi
h is simply where the errors are the largest. This is onlypossible with methods working with s
attered data. We believe this will provebene�
ial again when we move to higher dimensional problems. The main lessonfrom this experiment is that during the pro
ess, one should maintain at least19
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Figure 7: Impa
t of removing data sites using RBF2D regressionone layer of data sites on the volume level boundaries to aim for the maximumvalue for the 
ontra
t. From a 
omputational perspe
tive, TBF2D bene�ts fromworking on a grid, whereas RBF2D does not.6 Con
lusionIn this arti
le we introdu
ed 
ompa
tly supported Radial Basis Fun
tions intothe Least-Squares Monte Carlo regression setting. We employed two types oftwo-dimensional regression methods, one based on Radial Basis Fun
tions in twodimensions (RBF2D) and the other one based on the Tensor of two univariateBasis Fun
tions (TBF2D). We used these Least-Squares Monte Carlo methodsto value gas storage with the spot approa
h. We proposed a variant of earlierspot approa
hes from Boogert & de Jong [1℄, and Carmona & Ludkovki [4℄ andDenault et al. [7℄ (CL/DSS). In our methodology we applied a two-dimensionalregression on both pri
e and volume, but maintained a uniform dis
retisation inthe volume dimension whilst we refrained from using the me
hanism introdu
edin CL/DSS to 
reate `forward optimal paths'.We 
ompared the valuation of a slow (depleted �eld) and a fast (salt 
avern)gas storage using our two-dimensional regression approa
hes against the one di-mensional one from Boogert & de Jong [1℄ 
alled Cubi
1D. We found that bothRBF2D and TBF2D provide a similar, yet 
onsistently higher valuation thanthe Cubi
1D for both the slow and the fast storage. All valuations are within20
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Figure 8: Impa
t of removing data sites using TBF2D regression
1% of ea
h other. A positive point for the RBF2D and TBF2D based regressionmethods is that they both 
onverge to the 
orre
t value for a lower number ofsimulations. If we 
ompare RBF2D and TBF2D, we see TBF2D has severaladvantages. First, we �nd that TBF2D is 
omputationally superior and a lotfaster than the RBF2D due to the usage of the inversion method introdu
ed byHubbert & Mazières [12℄. This indi
ates that TBF2D is more appli
able to mul-tiple dimensions. Another advantage 
on
erns the shape fa
tor. While RBF2D
ontains one shape fa
tor whi
h has to balan
e the support of two dimensions,the TBF2D 
ontains one shape parameter for ea
h dimension. Currently, wehave employed a trial-and-error pro
ess to 
hoose the shape fa
tor(s). The nat-ural next step is to investigate alternatives to 
hoose the shape fa
tor(s) in anautomated fashion.Next, we 
ompared the impa
t of using s
attered data in 
ontrast to griddata. We found that if we take out pri
e-volume data sites at random, the value
an drop signi�
antly. A solution to this problem is to prote
t the data sites onthe volume boundaries. In our example, a single layer turns out to be su�
ient.This �nding draws our attention to the pra
ti
e of randomisation employed inthe CL/DSS approa
h in 
ase the me
hanism used to 
reate forward optimalpaths fails. Although one would expe
t that this randomisation method works,we suggest to 
hange this 
omplete randomisation to a pro
edure that ensuresmore data sites to be assigned at the volume level boundaries.Compa
tly supported basis fun
tions, whi
h we used here, lead to a lower
ondition number for the regressor matrix 
ompared to the one obtained from21



globally supported fun
tions. Besides, these basis o�er us other bene�ts whi
hwe have not investigated yet. One of them is that they handle better dis
on-tinuities in the derivative of the value fun
tion. For example in a gas storagethis is o

urs when a penalty is applied in 
ase the desired end volume is notrea
hed.In this arti
le we limited ourselves to one pri
e and one volume dimension.Previously it was shown that multi-fa
tor pri
e pro
esses 
an be handled with adis
retised approa
h (Boogert & De Jong [2℄) and s
attered approa
h (Carmona& Ludkovski [4℄), while 
ompa
tly supported RBF and TBF have been shown towork in multiple dimensions (Hubbert & Mazières [12℄). As a next step, we planto take up the problem of multiple pri
e and volume dimensions. We believethat our new methodology in 
ombination with the new regression methods willprove bene�
ial for that situation.7 A
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